

Title 24 Rooftop PV Cost-Effectiveness Analysis

California Energy Commission May 29, 2013

Snuller Price
Andrew DeBenedictis
Katie Pickrell

- Executive Summary (9am to 9:30am)
- + Question and Answer (9:30am to 10am)
- + Analysis Overview (10am to 10:45am)
 - PV Capital Costs
 - PV Financial Analysis
 - Approach 1: Average Consumer Savings Analysis
 - Approach 2: Market-Segmented Analysis
- Question and Answer (10:45am to 11:30am)

- E3 is an electricity consulting firm founded in 1989 in San Francisco
- Clients span local, state and federal government, small and large public and investor-owned electric utilities, and energy technology companies
- Lead consultant on developing TDV for the CEC, and for evaluating economics of California Solar Initiative
- Approximately 30 staff in energy economics, distributed resources, policy implementation, and resource planning

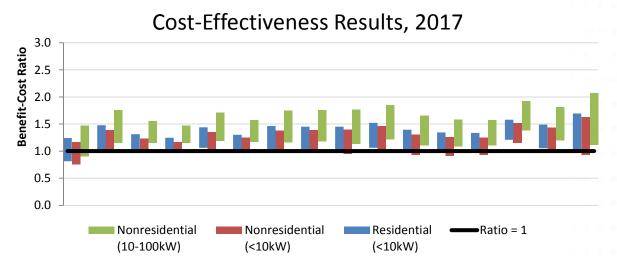
EXECUTIVE SUMMARY

- → Determine whether rooftop PV will be costeffective if included in Title 24 Building Energy Efficiency Standards
 - Analysis required by Senate Bill 1 (Murray, Chapter 132, Statutes of 2006)
- + First public CEC analysis in response to statute
- + This study is narrowly focused on costeffectiveness, and does not address other issues associated with mandating PV in new construction

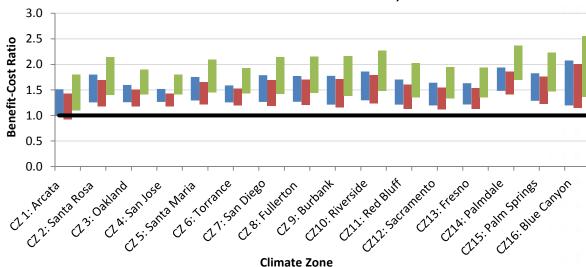
Cost-Effectiveness Framework

- Lifecycle benefits calculated using two parallel approaches
 - 1. Average Consumer Analysis
 - Same method as used for Title 24 cost-effectiveness
 - 2. Market Segmented Analysis
 - Estimate of the actual cost-effectiveness of the solar PV to building owner
- Lifecycle PV costs calculated using financial pro forma model and PV capital cost forecast

Results indicate that...

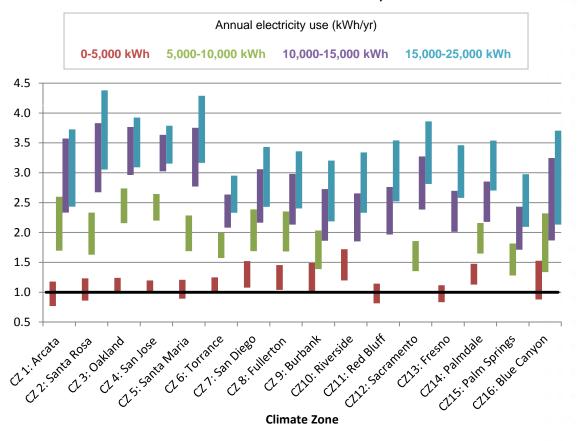

- Solar PV on new buildings is forecast to be cost-effective for the next cycle of building codes
- Solar PV is forecast to be cost-effective for many residential and commercial market segments

Requirements for these findings


- Continuation of NEM and current utility rate designs, particularly the inclining block residential rate
- Continued decline in PV prices beyond parity with retail rates

Average Consumer Savings Results

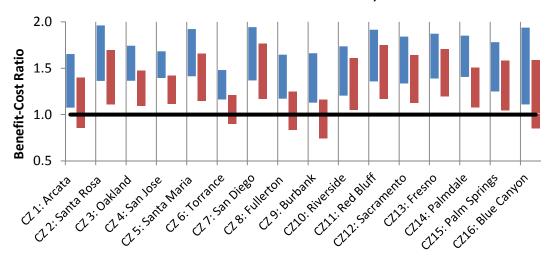
Cost-Effectiveness Results, 2020



- In 2017, PV is forecast to be cost effective under a low cost scenario across all sectors and climate zones
- In a 2017 high cost scenario, PV is marginally cost effective, depending on climate zone, consumer type and PV system size
- + By 2020, PV is cost effective in most climate zones under both a low and high cost scenario, due to predicted declines in PV prices

Market-Segmented Results: Residential

Cost-Effectiveness Results, 2020


- + Residential consumers segmented by total annual usage
- Due to inverted block residential rate structures, usage has a significant impact on PV cost-effectiveness
- In 2020, PV is forecast to be cost-effective for all residential consumers with annual usage greater than 5,000 kWh

Market-Segmented Results: Commercial

Ratio = 1

Cost-Effectiveness Results, 2020

Climate Zone

Large

- PG&E A-10-TOU
- SCE GS-2
- SDG&E A6 100-500MWh 10-100kW Unit

Small

- PG&E A1
- SCE GS-1
- SDG&E A 10-15MWh
- <10kW Unit

Commercial consumers segmented by size

- Different rates used for small and large consumers
- Different PV system sizes assigned to each sector

+ Cost-effectiveness results are heavily impacted by utility rate structures

- Small commercial customers' rate structures result in larger bill savings from PV
- Large commercial customers' rate structures result in less cost-effective PV, especially in SCE territory

Incorporating PV into Title 24

- Challenges beyond cost-effectiveness exist that this study does not address
- + For example,
 - Some sites are not good candidates for solar, and existing rules to allow flexible compliance through ACM may need to be adjusted
 - Allowing solar PV to displace energy efficiency measures in Title 24 may undermine drive to more efficient buildings

Question & Answer

ANALYSIS OVERVIEW

KEY METHODS, FIGURES AND FINDINGS IN THE REPORT

Costs

Benefits

PV Levelized Cost of Electricity (LCOE)

Parameters include:

- Upfront capital cost
- Inverter, insurance, O&M costs
- Capacity factor & degradation
- Financing terms
- Tax considerations
- Useful system life

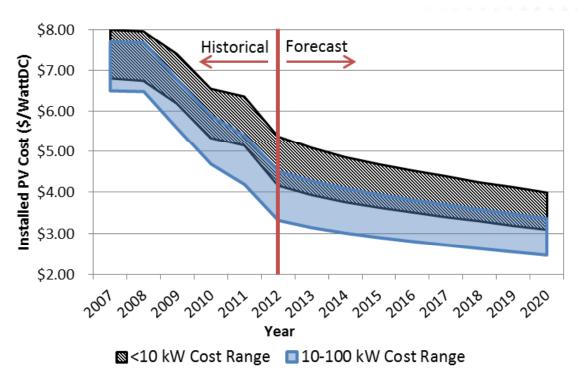
Approach 1: TDVs

Using 2013 TDV base values, standard for Title 24 cost-effectiveness analysis

Approach 2: Utility Bill Savings

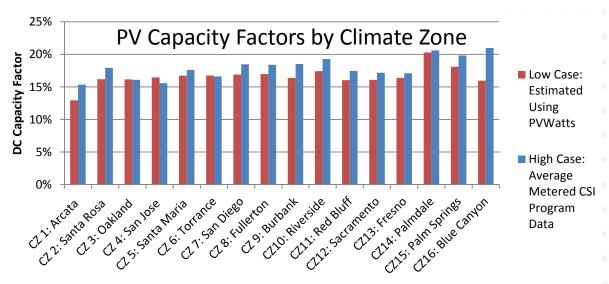
Analysis uses high and low PV cost estimates to compare a range of possible costs

- High estimate: Assume current installed PV costs are the same as current costs from CSI PowerClerk database
 - Because most projects in CSI database are retrofits, median values from database were used for high estimate
- Low estimate: PV installed as part of new construction
 - "Tracking the Sun V" report estimates a \$1.20/Watt cost difference between retrofit and new construction, based on reported costs from CSI database and NSHP program


Two size ranges included in analysis

- <10 kW for residential and small commercial consumers
- 10-100 kW for large commercial consumers

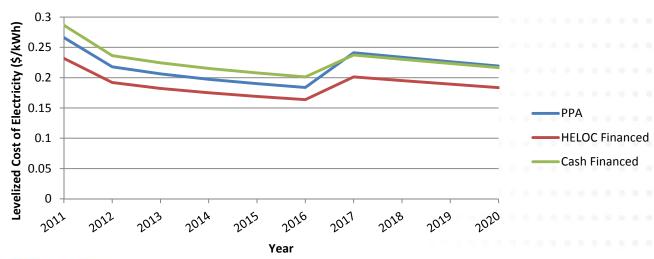
PV Capital Cost Forecast


- Future PV costs are forecast using an 80% progress ratio: when global capacity doubles, PV cost drops 20%
- Progress ratio applied to 2012 CSI data to generate costs for 2013 through 2020

PV System Performance

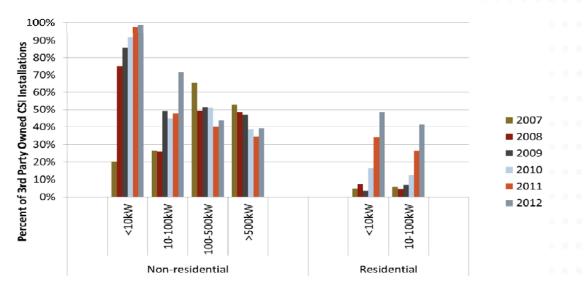
- PV capacity factors assigned to each of California's 16 climate zones
- High and low capacity factors used to create range of possible performance in each zone
 - Capacity factors simulated in PVWatts, an NREL simulation tool, used as low case
 - In most climate zones, capacity factors derived from real metered generation data from CSI load impact studies are higher than simulated capacity factors; used as high case

- + Ranges of PV capital costs and capacity factors combined to generate two scenarios for analysis
- + Scenario 1: High Cost Solar
 - High capital cost
 - Low capacity factor
- + Scenario 2: Low Cost Solar
 - Low capital cost
 - High capacity factor
- High and low benchmarks give expected range of costs


- + E3 compared 3 common financing options available to rooftop PV customers:
 - PPA (private purchase agreement): system is owned by a thirdparty installer who sells electricity to customer
 - HELOC (home equity line of credit): customer owns system and finances the full cost with debt, borrowed against home equity at a low interest rate with tax deductible interest
 - Cash: customer owns system and finances the full cost with cash
- Options compared on basis of levelized cost of electricity (LCOE), calculated using financial pro forma model
- Analysis assumes 20 year PPA term, 25 year useful module life, 10 year inverter life
 - Based on current industry standards for PPA terms and PV module & inverter warranties

PV Financing Comparison

- Analysis shows that PPA financing is more expensive than HELOC financing
 - Cost of capital is lower with a HELOC
 - Equity return is taxable under PPA financing
 - Those increased costs outweigh PPA savings from MACRS depreciation
 - Analysis does not include Bonus Depreciation, which is set to expire at the end of 2013 (part of the recovery act, not permanent policy)


PV Levelized Cost of Electricity by Financing Type

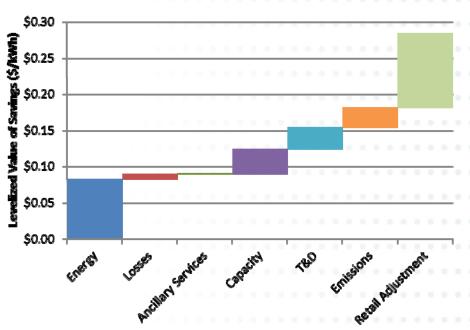
Prevalence of PPA Financing

- Despite relative expense, PPA financing is becoming increasingly common for residential systems
 - · Benefits of reduced maintenance, avoids borrowing
- PPAs account for almost all non-residential rooftop PV installations
- We expect trend to continue and have performed all analysis assuming PPA financing
- + PPA leases are priced to generate a 7.7% after-tax return on capital, reflecting the underlying assumption that PPA pricing in California is highly competitive

Investment Tax Credit

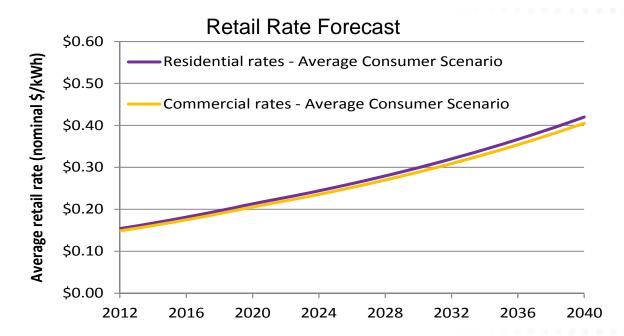
- + ITC applied to all installations
- + 30% tax credit until 2017, when it drops to 10%
 - Consistent with current federal policy
- Financial analysis assumes than all benefits of ITC can be fully monetized

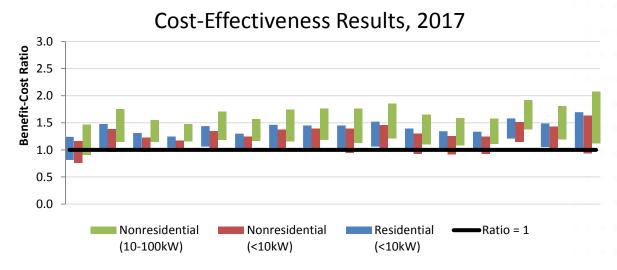
Analysis Approaches


- Benefits are calculated using two complementary approaches
 - Average Consumer approach: estimate of cost savings to the average consumer based on statewide average retail electricity rates
 - Market Segmented approach: estimate of cost savings to specific consumer segments based on avoided utility electricity bills
- In each approach, benefits are levelized over 25 year period and compared to PV LCOE

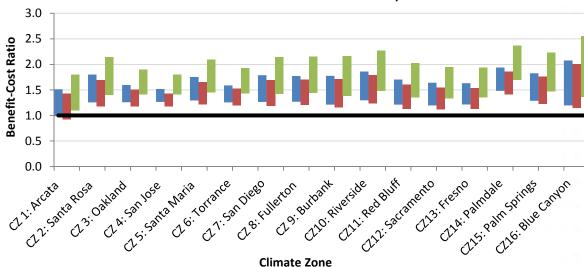
Average Consumer Savings Analysis

- Average consumer savings calculated with Time Dependent Valuation (TDV) analysis
- Analysis uses TDV "base" values developed as part of the CEC's update to the 2013 Building Energy Efficiency Standards
- TDV components include hourly avoided energy, capacity, transmission & distribution, and greenhouse gas emissions costs
- A retail rate adder is added to the avoided costs to equate TDV values to statewide average retail rates


Average Consumer Savings Lifecycle PV Benefits Breakdown


Average Retail Rate Forecast

- Retail rate adders for residential and commercial consumers are developed based on retail rate forecast
- Analysis uses forecast adopted in the 2013 Title 24 building standards proceeding
 - 2.11% real annual increase through 2020, 1.42% real annual increase beyond 2020
 - Originally created for CARB 33% RPS evaluation



Average Consumer Savings Results

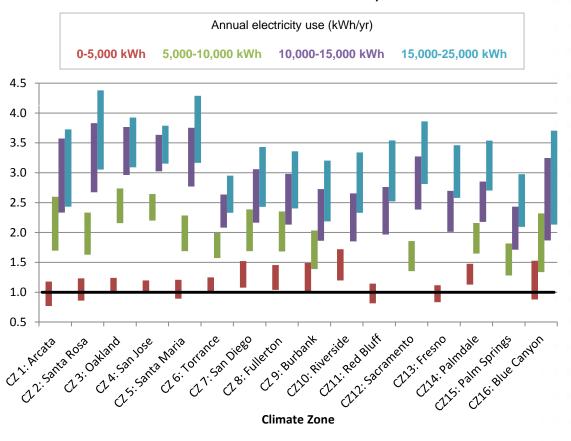
Cost-Effectiveness Results, 2020

Energy+Environmental Economics

- In 2017, PV is forecast to be cost effective under a low cost scenario across all sectors and climate zones
- In a 2017 high cost scenario, PV is marginally cost effective, depending on climate zone, consumer type and PV system size
- + By 2020, PV is cost effective in most climate zones under both a low and high cost scenario, due to predicted declines in PV prices

Market-Segmented Analysis

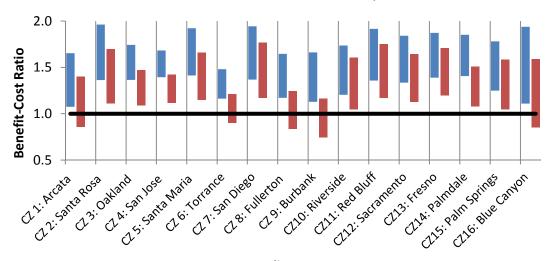
- Market-segmented benefits are calculated based on avoided electricity bills
- Customers are segmented by sector (residential and commercial) and consumption level
- Appropriate residential, small commercial, and large commercial rates are assigned to each climate zone based on alignment with IOU territory


Bill Savings Calculation

- + Bill savings are calculated from 2 hourly load shapes: customer gross load in absence of PV, and customer net load after PV is installed
- Bills calculated with E3 in-house tool developed for the CPUC NEM analysis
- Savings are escalated for years after 2011 using retail rate escalation forecast
- Bill calculations assume participation in Net Energy Metering (NEM)

Market-Segmented Results: Residential

Cost-Effectiveness Results, 2020


- Residential consumers segmented by total annual usage
- Due to inverted block residential rate structures, usage has a significant impact on PV cost-effectiveness
- In 2020, PV is forecast to be cost-effective for all residential consumers with annual usage greater than 5,000 kWh

Market-Segmented Results: Commercial

Ratio = 1

Cost-Effectiveness Results, 2020

Climate Zone

Large

- PG&E A-10-TOU
- SCE GS-2
- SDG&E A6 100-500MWh 10-100kW Unit

Small

- PG&E A1
- SCE GS-1
- SDG&E A 10-15MWh
- <10kW Unit

Commercial consumers segmented by size

- Different rates used for small and large consumers
- Different PV system sizes assigned to each sector

+ Cost-effectiveness results are heavily impacted by utility rate structures

- Small commercial customers' rate structures result in larger bill savings from PV
- Large commercial customers' rate structures result in less cost-effective PV, especially in SCE territory

Understanding Results

- Results indicate that solar PV on new buildings will likely be cost-effective for the next cycle of building codes
- Solar PV will be cost-effective for many residential and commercial market segments
- Requirements for these findings
 - Continuation of NEM and current utility rate designs, particularly the inclining block residential rate
 - Continued decline in PV prices is required beyond parity in retail rates
- + Incorporating PV into Title 24
 - Challenges exist beyond cost-effectiveness exist that this study does not address
 - Some sites are not good candidates for solar, and existing rules to allow flexible compliance through ACM may need to be adjusted
 - Allowing solar PV to displace energy efficiency measures in Title 24 may undermine drive to more efficient buildings

Question and Answer

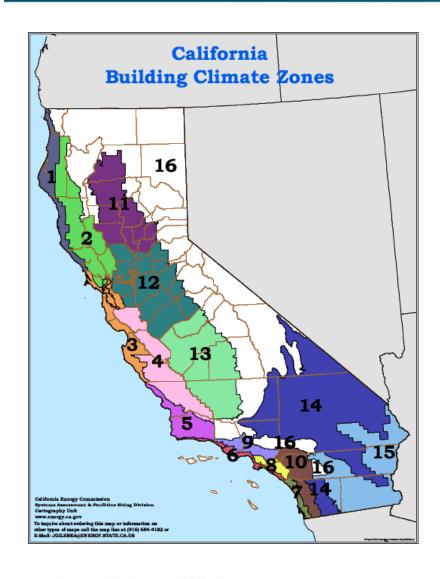
Contact Information

Energy + Environmental Economics (415) 391-5100

101 Montgomery Street, San Francisco, 94104

Snuller Price: snu@ethree.com

Andrew DeBenedictis: andrew@ethree.com


Katie Pickrell: katie.pickrell@ethree.com

Appendix

Climate Zone Assignments

CZ	Utility	CZ	Utility
1	PG&E	9	SCE
2	PG&E	10	SCE
3	PG&E	11	PG&E
4	PG&E	12	PG&E
5	PG&E	13	PG&E
6	SCE	14	SCE
7	SDG&E	15	SCE
8	SCE	16	SCE